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We will consider the flow of a layer of viscous incompressible liquid along a vertical 
plane formed of two semiplanes abutting along a horizontal straight line. One semiplane 
moves relative to the other along their common boundary line. An exact analytic solution is 
obtained for the velocity distribution in the flow. The solution can be generalized to the 
case in which the plane consists of several close-spaced bands moving relative to each other 
alongtheir boundary lines. 

Without limiting generality, we will assume that the upper semiplane is at rest while 
the lower one moves. The dimensionless equations of motion and continuity and the boundary 
conditions have the form [I] 
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where as length and velocity scales we use the thickness of the liquid layer ho as x + - 
and the velocity of motion of the lower semiplane Uo relative to the upper semiplane) z, y, 
and x are Cartesian coordinates (x is directed downward along the liquid flow, y is perpen- 
dicular to the plane, and z is along the boundary line between the planes, with origin on the 
boundary); Vx, Vy, and v z are the velocity components along x, y, and z respectively; p is 
pressure; h(x ) is the liquid layer thickness; h x = dh/dx; Re is the Reynolds number; Fr is 
the Froude number; a is the surface tension coefficient; g is the acceleration of gravity; 
p is the liquid density; ~ is the kinematic viscosity. The subscript zero denotes dimen- 

sional quantities. 

The equations andboundary conditions are written with consideration of the fact that the 
flow is independent of the coordinate z. Boundary conditions (2) are conditions of adhesion 
to and non-flow through the solid surface, while boundary conditions (3) describe the equality 
of tangent and normal components of the stress tensors on the curved free surface h(x) of the 

liquid and gas phase. 

We will seek a solution to the problem of Eqs. (1)--(4) in the form 

v x =  R e ( - - Y V 2 + y ) / F r ,  vy = 0, v z = vz(x, y), h(x) = i .  (5) 
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With substitution of Eq. 
boundary conditions: 

(5), problem (1)--(4) reduces to solution of a single equation with 
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Here O(x) is a Heaviside function (O(x) = I, x> 0; O(x) ---- 0, x < 0). Problems analogous to Eq. 
(6) arise in the theory of heat transfer [2, 3]. Performing the substitution v z = v(x, y) + 
O(x) and using a Fourier transform, we reduce Eq. (6) to the form 
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The solution of Eq. (7) has the form 
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Here F(a, c; z) is a Cummer function [4] and the square root should be considered as a single- 
valued function, coinciding on the upper side of the section along the real positive axis with 
the arithmetic value of the root. The distribution of the function v(x, y) is defined by the 
reverse Fourier transform of the function V(y, ~) 
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From Eqs. (8) and (9) we find 
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integrand of Eq. (i0) we obtain formulas for the 

V~ (x, y) ---- ~ A.e~ 

( } Q , ( y ) = e x p  - ~ [ ( y - t )  ~ + t 1  f y~ 2 

+ 4  8 i , ~ ,  - - ( y -  , 

A ~  - -  - o ;  ~ [ O H  ( ~ ) / a ~ l ~ ,  

H ( n )  - - F  ~ 4 ' ~  

(ii) 

45 



t 
, . , ,  < Wn 

4ea ~92 49e v z q ~  ~ z  u~ 

Fig. i Fig. 2 

Here mn are roots of the equation H(mn) = 0, n = i, 2, 3 .... , lying in the right semiplane 
of the complex plane. We note that An can be represented in the form of the double series 
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whare(a)~ is the Pochhammer symbol [4]. 

Similarly, from Eq. (I0) with consideration of v z = v(x, y) + O(x) ::Jwe obtain the velocity 
distribution forxx > 0 
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where o n is the n-th positive root of the transcendental equation R(q) = O. The representa- 
tion of B n in the form of a double series is 
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Thus, Eqs. (5) and (11)--(14) define the analytical solution of the problem of distribu- 
tion of the velocity of a liquid flowing down a vertical plane with abrupt change in boundary 
conditions. It is evident from Eqs. (11)--(14) that the distribution Vz(X, y) depends solely 
on the combination of the Reynolds and Froude numbers: D = Re~Fr. 

We note that a similar solution can be obtained for the case of any constant inclination 
of the planes over which the liquid layer moves. Moreover, if in Eq. (6) we replace the 
velocity Vz with the temperature T, and the ratio Re=/Fr by the Peclet number Pe, then the 
problem reduces to determination of the temperature profile in a liquid moving between two 
planes on which T = Ti for x < 0 and T = T2 at x > 0. In this case, Eqs. (11)--(14) provide 
a solution for the temperature. The corresponding temperature profile problem was solved 
approximately in [3] for small Peclet numbers by using expansion in a series. 

Equations (11)--(14) were used to calculate the distribution Vz(X, y) for values of the 
parameter D = i. Initially roots of the functions H(N) and R(N) were found, then roots of 
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the functions R(n) were determined by Mueller's iterative method for solution of algebraic 
equations of high degree [5]. After finding the roots of the functions H(N) and R(N) Eqs. 
(11)--(14) were summed numerically and their real components were determined. Figure I shows 
the distribution Vz(X , y) along the y-axis for D = i and x = 0.4 (curve I), x = 0.8 (curve 2). 

As is evident from Fig. i, the Vz(X, y) curves decrease monotonically with increase in : 
y. The upper liquid layers on the segment adjacent to the boundary lag behind the lower. 
But with increase in x the distribution Vz(X , y) tends to unity. The velocity in the z di- 
rection over the entire liquid thickness becomes equal to the velocity of the moving semiplane. 

Figure 2 shows Vz(X, y) along the y-axis for D = i and x = --0.01. According to Fig. 2, 
the curve Vz(X, y) monotonically increases from 0 at the point y = 0 to 0.1577 at y = I. 

Viscous stresses acting in the z-direction and created by the liquid flow in the lower 
semiplane region lead to a motion along z of the upper liquid layers over the fixed semiplane. 
The liquid flow over two semiplanes moving relative to each other occurs without change in 
the liquid layer thickness or the velocity component distribution along the x-axis. 

In conclusion, we will consider liquid flow on a plane consisting of several adjoining 
regions: x < x~, x~ x ~x2 .... , xi~ x ~xi+~ , x > xi+2, moving relative to each other 
with velocities U k (k = I, .., i +2). 

For simplicity, without limiting generality we will conside~ the case in which the upper 
region x < 0 is at rest, the adjacent infinite band 0 ~x~.xo moves along the boundary line 
with a velocity ~i, and the lower region x > xo moves with a velocity O~ relative to the 
fixed region. The flow along the x-axis does not change, and the flow along the z-axis can 
be found by solution of the problem 
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Since Eq. (15) and boundary conditions (16) and (17) are linear, the solution of Eqs. 
(15)--(17) can be sought in the form of the sum of solutions of two problems: the solution 
of the first problem describes the flow on a plane consisting of two adjacent semiplanes; 
the upper at rest, and the lower moving with a velocity of O1, while the solution of the 
second problem describes a flow in which the upper region x < xo is at rest, and the lower 
moves with a velocity ~a, such that O1 q-Oa = 02. Thus, the solution of Eqs. (15)--(17) 
reduces to solution of the following problems: 

Eq. (15) with boundary conditions 
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The method d e s c r i b e d  can be g e n e r a l i z e d  to  t h e  ca se  of  s e v e r a l  r e g i o n s  moving r e l a t i v e  
to  each  o t h e r .  

i, 
2. 
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BREAKUP OF A FREE JET OF A VISCOELASTIC FLUID 

B. M. Khusid UDC 532. 525.2 + 532.135 

A large number of papers has been published on the breakup of a jet of a high-viscosity 
Newtonian liquid flowing in a low-viscosity medium. The results of these papers show that 
there exist three regimes of jet breakup, depending on the flow velocities. At low velocities 
it breaks up under the action of capillary forces, while the long-wave axially symmetric per- 
turbations increase most quickly. 

The nature of perturbation evolution changes with increasing velocity. When the dynamic 
action of the medium exceeds the capillary forces the long-wave bending perturbations increase 
significantly more quickly than the axially symmetric ones. With further velocity increase 
the jet breakup into large parts is changed by spraying into a set of small droplets, the 
size of which is independent of the jet radius. The main purpose of the present work is to 
determine the velocity range in which a jet of a viscoelastic liquid breaks up into large 
parts. 

We investigate the evolution of long-wave perturbations kR ~ I in a circular jet of 
radius R of a viscoelastic liquid of density p, flowing with velocity U in a low-viscosity 
medium of density Po, where k is the perturbation wave number. If for kR ~.i the perturba- 
tion increment increases monotonically with k~ the nature of the breakup is approximated by 
a spray, requiring the study of short-wave asymptotics. The analysis is based on the equa- 
tions derived in [i]. We consider jets undergoing primarily extension or compression. This 
problem was first formulated in [2]. This mathematically insignificant complication of the 
problem makes it possible to estimate qualitatively the effect of a longitudinal strain, 
occurring in a viscoelastic jet, on its stability. We choose the theological equation of a 
Maxwell liquid with viscosity n and relaxation time ~ [3] : T -~ ~(DT/Dt-- W.T q- T-W) n u ~" 
(D.T ~- T.D) = 2ND, where D/Dt is the convective derivative, D is the velocity de-formation 
tensor, W is the vorticity tensor, T is the stress tensor, and e = 0, i, and--I, respectively, 
for the Jaumann, lower, and upper convective derivatives. The Maxwell liquid model is 
the simplest model qualitatively describing many properties of polymer liquids: instantaneous 
elasticity, stress relaxation, difference in normal stresses, etc. [3]. Theequations for the 
additional capillary and hydrodynamic pressures occurring during perturbation of a jet sur- 
face r = R + ~(~, z, t) are taken from [4-6]. The system of equations for small perturba- 
tions is significantly simplified when it is not necessary to take into account the time 
dependence of the longitudinal stress in the jet. This assumption is valid for t/% << i. In 
the absence of longitudinal stress these equations describe the evolution of perturbations 
in a relaxing jet. A solution of the equations is sought in the form exp(ikz + st). The 
system of equations decomposes into separate systems, each of which corresponds to a definite 
perturbation. We provide the equations for the azimuthal dependence of the surface displace- 
ment and the corresponding dispersion equations. The perturbations retaining the jet linear- 
ity are : 

p~z IU , e k~R2~ 
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